Novel Hydrogel Actuator Based on Biomimetic Chemistry
نویسندگان
چکیده
Hydrogel actuators were prepared by combining ionoprinting technique with reversible metal ion coordination chemistry found in mussel adhesive proteins. Hydrogels were formulated with biomimetic dopamine moiety, which contains a catechol side chain that is capable of forming mono-, bis-, and tris-complexes with ferric (Fe 3+ ) ions with increasing pH. CatecholFe 3+ complexation increased local crosslinking density, which induced hydrogel bending at the site of Fe 3+ ionoprinting. The effect of pH on the dynamic response of hydrogel actuation was tracked by following the radius of curvature at the ionoprinting site. Both the rate of change and the maximum radius of curvature increased when the pH with increasing pH (2.5-9.5), indicating that pH can be used to modulate hydrogel actuation. Additionally, hydrogels containing Fe 3+ demonstrated higher extent of deswelling when equilibrated at a basic pH. Similarly, dynamic mechanical analysis in the compression mode revealed that both the storage and loss modulus values for Fe 3+ -containing hydrogels increased with increasing pH. These results indicated that bisand tris-complexes formed at an elevated pH level contributed to a faster rate of actuation and a more condensed network architecture. Hydrogel actuation and deswelling were also observed at pH of 3.5 although to a lesser degree, potentially due to a stronger affinity between network-bound catechol and Fe 3+ ions as compared to complexes formed in a dilute solution.
منابع مشابه
Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells
Tumor metastasis with resistance to anticancer therapies is the main cause of death in cancer patients. It is necessary to develop reliable tumor metastasis models that can closely recapitulate the pathophysiological features of the native tumor tissue. In this study, chondroitin sulfate (CS)-modified alginate hydrogel beads (ALG-CS) are developed to mimic the in vivo tumor microenvironment wit...
متن کاملA Pendulum-Like Motion of Nanofiber Gel Actuator Synchronized with External Periodic pH Oscillation
In this study, we succeeded in manufacturing a novel nanofiber hydrogel actuator that caused a bending and stretching motion synchronized with external pH oscillation, based on a bromate/sulfite/ferrocyanide reaction. The novel nanofiber gel actuator was composed of electrospun nanofibers synthesized by copolymerizing acrylic acid and hydrophobic butyl methacrylate as a solubility control site....
متن کاملMagnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery
Objective(s): The main aim of current research was to develop a novel magnetically responsive hydrogel by radical polymerization of carboxymethyl cellulose (CMC) on acryl amide (Am) using N,N'-methylene bis acrylamide (MBA) as a crosslinking agent, potassium persulfate (KPS) as a free radical initiator, and magnetic montmorillonite ( mMT) nanoclay as nano-...
متن کاملHydrogel core flexible matrix composite (H-FMC) actuators: theory and preliminary modelling
The underlying theory of a new actuator concept based on hydrogel core flexible matrix composites (H-FMC) is presented. The key principle that underlines the H-FMC actuator operation is that the three-dimensional swelling of a hydrogel is partially constrained in order to improve the amount of useful work done. The partial constraint is applied to the hydrogel by a flexible matrix composite (FM...
متن کاملpH Sensitive Hydrogel Based Acrylic Acid for Controlled Drug Release
Hydrogels, due to their unique potentials such as high-water content and hydrophilicity are interest for the controlled release of drug molecules. The present study aims to create a controlled-release system through the preparation and characterization of hydrogels based on pH-sensitive polymers such as poly (acrylic acid). Poly (acrylic acid), p(AA), hydrogel has been synthesized by radical po...
متن کامل